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We establish a characterization theorem for log integrable measures associated
with systems of rational functions that are orthonormal on the unit circle and have
all their poles at a given sequence of points outside the unit disk. Ratio and nth
root asymptotic theorems are proved as well. © [992 Academic Press, Inc.

1. INTRODUCTION AND NOTATION

Let dJ1 be a finite positive Borel measure on the unit circle oA := {z E C:
Izi = I} whose support consists of infinitely many points. Let J1 = J1a + J1, be
its canonical decomposition into the absolutely continuous and the
singular parts (with respect to Lebesgue measure on the circle). We denote
by J1'(() the Radon-Nikodym derivative of J1a with respect to d(). Then
J1'EL 1 [O,2n) and J1'(()~O a.e. in [O,2n).

Let {aJ~ 0 with lail < 1 be an arbitrary sequence of complex numbers
and let some of them have finite or even infinite multiplicity (it is not
necessary for them to appear successively). The so-called Malmquist system
of rational functions (cf. (191) is defined by

and

n= 1, ...,
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where for ak=° we put lakl/ak = -1. It is easy to show that this
Malmquist system is orthonormal on the unit circle in the sense that

m, n = 0,1,2, ..., Z = ei
{}.

This system is the result of orthogonalization of the ordered sequence
of functions of the system {qJn(z)}~ on the unit circle with the weight
function dB.

Now denote by {tPn(z)} ~ the orthogonalization of the ordered systems
of the Malmquist system on the unit circle with respect to dj1(B). Thus we
come to the sequence of rational functions {tPn(z)}~ which satisfies and is
uniquely determined by the conditions

n

tPn(Z) = tPn(dj1, z):= L Ck,nqJk(Z),
k~O

and

m, n = 0, 1, 2, ..., Z = ei
{}.

Note that in the extreme case, when ak = °(0::;; k < 0Ci), the system of func
tions {tPn(z)} ~ turns into the system of orthogonal polynomials on the unit
circle with respect to dj1. The reason for interest in this system is their close
connection with the Nevanlinna-Pick interpolation problem and applica
tions in circuits, signal processing, inverse scattering, systems theory,
continued fractions, and Pade approximation. See for example [1-3,5-10].
The most complete survey on the topic including the algebra as well as
the analysis is given in an excellent report [4]. Here we prove some
characterization theorems for the measure associated with {tPn(z)}~ and
the kernel function

n

Sn(~; z) = L tPk(~) tPk(Z),
k~O

n=O, 1, ....

We generalize the results in the extreme case (cf. [12,14,15]).

2. MAIN THEOREMS

We state our theorems here and give the proofs in the next section. We
define
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n=2, 3, ....

For measures belonging to the Szego class, we have the following charac
terization.

THEOREM 2.1. Let L;':o (l ~ lail) = 00. Then the following statements
are equivalent:

(a) logp.'EL 1.

(b) L;:o l~i(OW< 00.

(c) The set U:= {e,3;};:1 is not closed in L 2(dp.).

Define Sn(z):= Sn(O; z), Yn:= Sn(O) = L7~0 l~i(OW, and wn(z):=
TI7~0 (1- Ct;z). Regarding the regularity of dp. (cf. [14,17]), we have the
following extension.

THEOREM 2.2. For any measure dp., limn ~ 00 Y~/n = 1 if and only if
limn ~ 00 1wn(z) Sn(z )1 1/n = 1 locally uniformly in Izi < 1.

Remark. Note that for the case ak=O, k=O, 1, ..., Sn(Z)=Kn~:(Z) and
Yn = K~. SO Theorem 3.3 in [14] is a special case of Theorem 2.2.

For the ratio asymptotic behavior, we have

THEOREM 2.3. For any measure dp., limn ~ 00 Yn_ dyn= 1 if and only if
limn~oc Sn __ 1(z)/SAz) = 1 locally uniformly in Izl < 1.

3. PROOF OF THEOREMS

Let &" denote the set of all polynomials with degree at most nand
let &,,[ao, ..., an] be the set of all the linear combinations of the first
n + 1 Malmquist functions <))o(z), ..., <))n(z). It is easy to see that any
unE&,,[ao, ..., an] can be written as un(z) = vn(z)/wn(z), where VnE&". For
any p,,(z) = a"z" + ''', a" # 0, define p:(z) := z"P,,(l/z).

Proof of Theorem 2.1. (a) => (b): The proof follows from Theorem 3.4
in [10].

(b)=>(c): Let

sf:= {RAz): R,,(z)E&,,[ao, ..., a,,] and R,,(O)= 1}
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Then from [7], we know that

X(SnjYn) = min X(Rn)= llYn·
R n E.s4

(3.1 )

For any RnEd, since Rn(O) = 1, we can rewrite Rn(z) as rn(z)jwn(z), where
rnE&;' and rn(O) = 1, and so Rn(z) = [1 +ZPn_I(Z)]jwn(z) for some
Pn_1E&;'_I' From (3.1) we can see that

llYn = min X(Rn)= min X([l +ZPn_I(Z)]jwn(z))
RnEd Pn-l E&Pn-l

min X( {I + [1 +ZPn_I(Z) - wn(z)]jwn(z) }j(l-lioz)),
Pn-l E&n-l

where wn(z) :=wn(z)j(l-lioz). Note that qn(z):= 1+ZPn_I(Z)-Wn(Z)E&;,
and qn(O) = 0, so qn(z) = zln_1 (z) for some In_1 E &;'-1' Thus

1jYn:( min x(l + [zln_l(z)]jwn(z))j(1-IO:ol)2
tn-l E Efln-l

= min x(ljz+ In_l(z)jwn(z))j(1-IO:ol)2
tn-l E &Ih-l

min x(ljz + un_ l(z))j(l-IO:ol f
Un-l E.1Pn -l[{Xl, ... ,ctn ]

Thus from (b) we know that the function 1jz cannot be approximated by
U to arbitrary accuracy in LAdJi).

(c) => (a): Let us assume that U is not closed; then there is a function
~(8)EL2(dJi), ~ i 0 and orthogonal to all functions of U, i.e., satisfying the
conditions

1 f2" -
2n 0 <Pk(Z) ~(8) dJi(8) = 0, k= 1, 2, ..., z=e;8. (3.2)

For any 10:1> 1, (z - ex) -I is analytic in Izi :( 1. So from 2:;:' 1 (1-10:;1) = 00

and the theorem in [19, p. 306], we have
00

(Z-o:)-I = L c;<p;(z)
;~I

uniformly on Izi = 1 for some c;. From (3.2), we have

1 f2" ~(8) dJi( 8)- 0
2n 0 z - 0: '
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lI21'zdr(8)
Jc(a)=- --,

2n 0 Z- a

This function has the same properties as the function Jc(z) in [12, p. 15].
Using the same argument in [12, p.15J we know that logfl'(8)EL1· I

Proof of Theorem 2.2. Let us rewrite Sn(z)=sn(z)/wn(z), where snEY;,
and sn(O) = ]in' From (3.1) we can see that all the zeros of Sn are outside of
Izi ~ 1. We now consider the new function s:(z)=Ynzn+ ... +an; all its
zeros lie in Izi < 1. By Helly's Selection Theorem and an ordinary compact
ness argument we know that any infinite subsequence A c;; N contains an
infinite subsequence, which we continue to denote by A, so that the two
limits

* 1-vs' --t v and -logYn--tO,
n n n

n--t 00, nE

exist for some measure v with compact supp(v) c C, where vs' is a discrete
measure with mass one at each zero of s:. From the proof of
Theorem 3.1.1 in [17J, we have

lim Is:(z)11/n = Izl,
n~ co

locally uniformly in Izi > 1. That is,

lim ISn(z)11/n = 1,

and so

n~ co

locally uniformly in Izl < 1. The proof of the other direction is trivial. I
Proof of Theorem 2.3. From (3.1), we have

~f21'IS:(Z)12 dfl(8)
2n 0 ]in Iwn(zW

1 12
1'

= 2n 0 ISn(z)/YnI
2

dfl(8)

. () . 1 12
1' I ()12 dfl( 8)= mm X Rn = mm -2 Pn Z 1 ()'2

RnEd PnE!?n n 0 Wn Z I
Pn(O) ~ 1

. 1 f21' n 2 dfl(8)
= mIn -2 Iz + Pn-l(z)1 1 ()12'

Pn-l E!?n-l n 0 W n Z
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Thus s;(z)/.jY,. is the nth orthonormal polynomial with respect to
dp/lwn(zW. From the theorem in [11, p. 198], we have

Then

(3.3 )

Again all the zeros of Sn lie in Izi > 1, so the function sn_l(z)(1- tXnz)/sn(z)
is analytic in Izi ~ 1 and has the following expansion

From (3.3), we can conclude that

IYIl_dYnI 2 + lan.l I2 + lan.21 2+ ... =Yn~dYn'

In consequence of Cauchy's inequality this yields, for Izi < 1,

lall,lz +an•2 z2 + ... 12~ (lan,lI2 + lan,21
2 + ... ) 1~11:12

Izl 2

~ (1-Yn-lIYn) 1-lz1 2

and as n ~ 00, together with limn ~ 00 Yn- dYn = 1, the last expression tends
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to 0 uniformly in Izl ::::;r< 1, and so we have limn~oo sn~l(z)(l-iinz)/sn(z)

= 1, i.e., limn~ CD Sn_I(Z)/Sn(z) = 1 locally uniformly in Izi < 1. The proof
of the other direction is easy. I
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